In Vitro Acoustic Characterization of Three Phospholipid Ultrasound Contrast Agents from 12 to 43 MHz

نویسندگان

  • Chao Sun
  • Vassilis Sboros
  • Mairead B. Butler
  • Carmel M. Moran
چکیده

The acoustic properties of two clinical (Definity, Lantheus Medical Imaging, North Billerica, MA, USA; SonoVue, Bracco S.P.A., Milan, Italy) and one pre-clinical (MicroMarker, untargeted, Bracco, Geneva, Switzerland; VisualSonics, Toronto, ON, Canada) ultrasound contrast agent were characterized using a broadband substitution technique over the ultrasound frequency range 12-43 MHz at 20 ± 1°C. At the same number concentration, the acoustic attenuation and contrast-to-tissue ratio of the three native ultrasound contrast agents are comparable at frequencies below 30 MHz, though their size distributions and encapsulated gases and shells differ. At frequencies above 30 MHz, native MicroMarker has higher attenuation values and contrast-to-tissue ratios than native Definity and SonoVue. Decantation was found to be an effective method to alter the size distribution and concentration of native clinical microbubble populations, enabling further contrast enhancement for specific pre-clinical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography

Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...

متن کامل

Acoustic characterization of a new trisacryl contrast agent. Part I: In vitro study.

The objective of the study was to acoustically characterize trisacryl polymeric microparticles (TMP), which are derived from biocompatible embolic agents. With significant acoustic properties, these polymeric particles could be potentially used as targeted ultrasound contrast agents, directed towards a specific site, with ligands conjugation on the polymeric network surface. In the in vitro stu...

متن کامل

Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.

Previous optical studies have shown threshold behavior of single-contrast agent microbubbles. Below the acoustic pressure threshold, phospholipid-coated microbubbles with sizes <5.0 mum in diameter oscillate significantly less than above the threshold pressure. Previous studies also revealed an acoustic pressure-dependent attenuation of ultrasound by microbubble contrast agents. In this study, ...

متن کامل

Modeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)

Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2014